§8.4 Areas in Polar Coordinates and planetary motion
Consider an object moving a trajectory $\vec{c}(t)$, where t is time:

We want to compute the area swept out after a time t.
To this end, it is useful to switch to polar coordinates where we have:

$$
\vec{c}(t)=r(t)(\cos \theta(t), \sin \theta(t))
$$

The curve $\vec{C}(t), 0 \leq t \leq T$ is then called a "parametric curve".

We indroduce the notation:

$$
\begin{equation*}
\vec{c}(t)=r(t) \cdot \vec{e}(\theta(t)) \tag{1}
\end{equation*}
$$

where

$$
\vec{e}(t)=(\cos t, \sin t)
$$

is just the parametrized curve that runs along the unit circle. Note that

$$
\vec{e}^{\prime}(t)=(-\sin t, \cos t)
$$

is also a unit vector but perpendicular to $\vec{e}(t)$.

$$
\begin{equation*}
\Longrightarrow \operatorname{det}\left(\vec{e}(t), \vec{e}^{\prime}(t)\right)=1 \tag{2}
\end{equation*}
$$

explicitly:

$$
\operatorname{det}\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)=\cos ^{2} t-\left(-\sin ^{2} t\right)=1
$$

In order to compute the area $A(t)$, it's useful to first obtain a formula for $A^{\prime}(t)$ To this end, consider the triangle with vertices $0, \vec{c}(t)$ and $\vec{c}(t+h)$:

The area of such a triangle can be expressed as:

$$
\operatorname{area}(\Delta(t))=\frac{1}{2} \operatorname{det}(\vec{c}(t), \vec{c}(t+h)-\vec{c}(t))
$$

Then we compute

$$
\begin{aligned}
A^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{A(t+h)-A(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\operatorname{area}(\Delta(h))}{h} \\
& =\frac{1}{2} \operatorname{det}\left(\vec{c}(t), \lim _{h \rightarrow 0} \frac{\vec{c}(t+h)-\vec{c}(t)}{h}\right) \\
& =\frac{1}{2} \operatorname{det}\left(\vec{c}(t), \vec{c}^{\prime}(t)\right)
\end{aligned}
$$

Using

$$
\begin{equation*}
\vec{c}^{\prime}(t)=r^{\prime}(t) \cdot \vec{e}(\theta(t))+r(t) \theta^{\prime}(t) \vec{e}^{\prime}(\theta(t)) \tag{3}
\end{equation*}
$$

and linearity of the determinant in its column vectors, we obtain! =0

$$
\begin{aligned}
\operatorname{det}\left(\vec{c}(t), \vec{c}^{\prime}(t)\right)= & r(t) r^{\prime}(t) \overbrace{t e t}^{(\vec{e}(\theta(t)), \vec{e}(\theta(t)))} \\
& +r(t)^{2} \theta^{\prime}(t) \underbrace{\operatorname{det}\left(\vec{e}(\theta(t)), \vec{e}^{\prime}(\theta(t))\right)}_{=1} \\
= & r^{2} \theta^{\prime}
\end{aligned}
$$

From this the total area can be obtained by integration:

$$
A(t)=\frac{1}{2} \int_{0}^{t} r(t)^{2} \theta^{\prime}(t) d t
$$

or, performing the substitution $d \phi=\theta^{\prime}(t) d t$:

$$
A(\theta)=\frac{1}{2} \int_{0}^{\theta(t)} \rho(\phi)^{2} d \phi
$$

where $\rho=r o \theta^{-1}$. Check:

$$
\begin{align*}
A^{\prime}(t) & =\frac{1}{2} \rho(\theta(t))^{2} \cdot \theta^{\prime}(t) \\
& =\frac{1}{2} r(t)^{2} \theta^{\prime}(t) \tag{5}
\end{align*}
$$

Let us now use these results to understand Kepler's 3 laws of planetary motion (1609):

K1: The planets move in ellipses, with the sun at one focus.

K2: Equal areas are swept out by the radius vector in equal times

K3: If a is the major axis of a planet's elliptical orbit and T its period, then a^{3} / T^{2} is the same for all planets.

In our notation, Kepler's second law is equivalent to saying that $A^{\prime}(t)$ is constant.
so $\quad K_{2} \Longleftrightarrow A^{\prime \prime}=0$
But

$$
\begin{aligned}
A^{\prime \prime} & =\frac{1}{2}\left[\operatorname{det}\left(\vec{c}, \vec{c}^{\prime}\right)\right]^{\prime}=\frac{1}{2} \underbrace{\operatorname{det}\left(c^{\prime}, c^{\prime}\right)}_{=0}+\frac{1}{2} \operatorname{det}\left(c, c^{\prime \prime}\right) \\
& =\frac{1}{2} \operatorname{det}\left(\vec{c}, \vec{c}^{\prime \prime}\right)
\end{aligned}
$$

(Homework)
So

$$
K 2 \Leftrightarrow \operatorname{det}\left(\vec{c}, \vec{c}^{\prime \prime}\right)=0
$$

From this we can deduce the following:
Proposition 8.2 (Newton) :
Kepler's second law is true if and only if there exists a farce" that is central, and in this case each planetary path $\vec{C}(t)=r(t) \cdot \vec{e}(\theta(t))$ satisfies the equation

$$
\begin{equation*}
v^{2} \theta^{\prime}=\operatorname{det}\left(\overrightarrow{c_{1}}, \vec{c}^{\prime}\right)=\text { constant } \tag{k2}
\end{equation*}
$$

Proof:
Newton introduced the "farce" \vec{F} as the product of accelavion and mass: $\vec{F}=m \cdot \vec{c}^{\prime \prime}(t)$

Saying that the farce is central just means that it always points along $\vec{c}(t)$. Since $\vec{c}^{\prime \prime}(t)$ is in the direction of the force, that is equivalent to saying that $\vec{c}^{\prime \prime}(f)$ always points along $\vec{C}(t)$.

$$
\Rightarrow \quad \operatorname{det}\left(\vec{c}(t), \vec{c}^{\prime \prime}(t)\right)=0 .
$$

Thus $\operatorname{det}\left(\vec{c}(t), \vec{C}^{\prime}(t)\right)=$ constant.

We are now in the position to derive Kepler's first law from Newton's concept of "gravitational force":
Proposition 8.3 (Newton):
If the gravitational farce of the sun is a central "force that satisfies an" inverse square law", then the path of any planet in it will be an ellipsis having the sun at ane focus.
Proof:
By $K 2$ we have $r^{2} \theta^{\prime}=\operatorname{det}\left(\vec{c}, \vec{c}^{\prime}\right)=M$
for some constant M. The hypothesis of an inverse square law can be written as

$$
\vec{c}^{u}(t)=-\frac{H}{r(t)^{2}} \vec{e}(\theta(t))
$$

for some constant H. Using $K 2$, this can be written as

$$
\frac{\vec{C}^{\prime \prime}(t)}{\theta^{\prime}(t)}=-\frac{H}{M} \vec{e}(\theta(t))
$$

Notice that the left-hand side of this equation is

$$
\left[\vec{c}^{\prime}(t) \circ \theta^{-1}\right]^{\prime}(\theta(t))
$$

(use inverse function derivative and chain rule)
So if we let

$$
D=\vec{c}^{\prime} \circ \theta^{-1}
$$

then the equation can be written as

$$
D^{\prime}(\theta)=-\frac{H}{M} \vec{e}(\theta)=-\frac{H}{M}(\cos \theta, \sin \theta)
$$

where we now view θ as an indipendent variable. Integrating gives

$$
D(\theta)=\left(\frac{H \cdot \sin \theta}{-M}+A, \frac{H \cdot \cos \theta}{M}+B\right)
$$

for two constants A and B.
Reintroducing the dependence on t_{1} we have

$$
\vec{c}^{\prime}(t)=\left(\frac{H \cdot \sin \theta(t)}{-M}+A, \frac{H \cdot \cos \theta(t)}{M}+B\right)
$$

Substituting this together with $\vec{C}=r(\cos \theta, \sin \theta)$, into the equation

$$
\operatorname{det}\left(\vec{c}, \vec{c}^{\prime}\right)=M
$$

we get

$$
r\left[\frac{H}{M} \cos ^{2} \theta+B \cos \theta+\frac{H}{M} \sin ^{2} \theta-A \sin \theta\right]=M
$$

which simplifies to

$$
r\left[\frac{H}{M^{2}}+\frac{B}{M} \cos \theta-\frac{A}{M} \sin \theta\right]=1
$$

This can be rewritten as (Homework):

$$
r(t)\left[\frac{H}{M^{2}}+C \cos (\theta(t)+D)\right]=1
$$

for some constants C and D. By choosing our polar axis apropriately (which ray corresponds to $\theta=0$), we can let $D=0$

$$
\begin{equation*}
\Rightarrow r[1+\varepsilon \cos \theta]=\frac{M^{2}}{H}=: \Lambda . \tag{*}
\end{equation*}
$$

This is the formula for an ellipsis.
That (x) is the formula for an ellipsis can be seen as follows:

with $0 \leq \varepsilon<1$. We have

$$
\begin{gather*}
r^{2}=x^{2}+y^{2} \tag{1}\\
\Rightarrow(2 a-r)^{2}=(x-(-2 \varepsilon a))^{2}+y^{2},
\end{gather*}
$$

or $\quad 4 a^{2}-4 a r+r^{2}=x^{2}+4 \varepsilon a x+4 \varepsilon^{2} a^{2}+y^{2}$ (2)
Subtracting (1) by (2) and dividing by $4 a$, we get

$$
\begin{array}{rlrl}
\text { get } & & a-r & =\Sigma x+\varepsilon^{2} a \\
\Leftrightarrow & r & =a-\Sigma x-\varepsilon^{2} a=\left(1-\varepsilon^{2}\right) a-\Sigma x \\
\Leftrightarrow & & r & =\Lambda-\Sigma x, \quad \text { for } \Lambda=\left(1-\varepsilon^{2}\right) a .
\end{array}
$$

Using $x=r \cos \theta$, we have finally

$$
r(1+\varepsilon \cos \theta)=\Lambda .
$$

